

Sandon Road, Meir, Stoke-on-Trent, ST3 7DF Telephone: 01782 377100 Fax: 01782 377101

Email: info@omera.co.uk Website: www.ormistonmeridianacademy.co.uk

Principal: Mrs C Stanyer

Year 10 Curriculum Map 2024 - 25 Subject: Science Topic (including links to additional resources) Assessment Window Week Commencing NB: P1 and C1 have been taught at the end of Y9 2023-24 Health and Reproduction 3 (B2) • Explain the terms cell, tissue, organ, organ system and organism, and be able to give examples of each. Staff INSET 02/09 Students Return 03/09 · Have an understanding of the size and scale of cells, tissues, organs, organ systems and organisms. • Describe the main systems in the human body and their functions • Describe the functions of the digestive system to digest and absorb foods. · Identify the positions of the main organs on a diagram of the digestive system. Know that food molecules must be small and soluble in order to be absorbed into the blood. Describe the functions of the organs in the system 09/09/2024 • Explain how the small intestine is adapted for its function · Define the terms 'catalyst' and 'enzyme'. Describe the properties of enzymes. Explain why enzymes are specific and are denatured by high temperatures and extremes of pH. Use the lock and key theory and collision theory to explain enzyme action • Carry out a safe, controlled investigation to measure the rate of the catalase under different conditions. 16/09/2024 Draw a diagram of the apparatus and write a method. Identify variables. Present and analyse the results: calculate rates of reaction using raw data and graphs. Draw conclusions and give explanations for the results • Explain why foods need to be digested into small, soluble molecules. • Describe the three types of enzymes involved in digestion, including the names of the substrates, products and where the enzymes are produced. Explain how bile helps in the digestion of fats. • Interpret graphs to determine the optimum temperature or pH for an enzyme · Calculate the rate of enzyme controlled reactions. 23/09/2024 Interpret the results from enzyme controlled reactions Describe the functions of the heart and circulatory system • Describe and label a diagram of the heart showing four chambers, vena cava, pulmonary artery, pulmonary vein and aorta. Describe the flow of blood from the body, through the heart and lungs and back to the body.

Ormiston Meridian Academy is committed to safeguarding and promoting the welfare of children and young people and expects all staff and volunteers to share this commitment.

Explain how the heart is adapted for its function.

	 Describe the heart as a double pump and explain why this is efficient. Describe the function of the pacemaker cells and coronary arteries. Label the main structures in the gas exchange system – trachea, bronchi, alveoli and capillary network around alveoli. Explain how the alveoli are adapted for efficient gas exchange Explain how the blood vessels are adapted for their function. 	
30/09/2024	 Describe problems associated with the heart and explain how they can be treated. Evaluate the use of drugs, mechanical devices and transplants to treat heart problems, including religious and ethical issues. Describe the four main components of blood. Explain how each component is adapted for its function. Identify pictures of the different blood cells. Explain how diet, stress and life situations can affect physical and mental health. Give examples of communicable and non-communicable diseases. Describe the effects of diet, smoking, alcohol and exercise on health. Explain how and why the Government encourages people to lead a healthy lifestyle. Give risk factors associated with cardiovascular disease, Type 2 diabetes, lung diseases and cancers Describe the difference between benign and malignant tumours. Explain how cancer may spread from one site in the body to form a secondary tumour in another part of the body. Label the main organs of a plant and describe their functions. Identify the tissues in a leaf and describe their functions. Relate the structure of each tissue to its function in photosynthesis. Explain why there are more stomata on the lower surface of a leaf. Describe the role of stomata and guard cells to control water loss and cancers 	
07/10/2024	 Describe the organs that make up the plant transport system. Describe the role of xylem, phloem and root hair cells and explain how they are adapted for their functions. Define the terms 'transpiration' and 'translocation'. Define the term 'active transport'. Describe where active transport occurs in humans and plants and what is transported. Explain why active transport requires energy. Explain how active transport enables cells to absorb ions from very dilute solutions. Explain the relationship between active transport and oxygen supply and numbers of mitochondria in cells. 	Learning Checkpoint
14/10/2024	 Matter 5 (C2) What is meant by bonding, and why do bonds form? What is ionic bonding? What is a giant ionic substance, and what are their properties? What is covalent bonding? What is a simple covalent substance, and what properties do they (generally) have? What is a giant covalent substance, and what properties do they have? 	
21/10/2024		Achievement Round 1
October Half Term		

04/11/2024		Achievement Round 1
11/11/2024	 Matter 5 (C2) What is meant by bonding, and why do bonds form? What is ionic bonding? What is a giant ionic substance, and what are their properties? What is covalent bonding? What is a simple covalent substance, and what properties do they (generally) have? What is a giant covalent substance, and what properties do they have? 	
18/11/2024	 What is metallic bonding? How does the structure of a metal link to the properties of a metal? Investigation (optional) into different metals. What are the properties of metals? What are common uses of metals and how do their properties link to these uses? How do you determine the type of bonding in a substance? Investigation into different substances. 	
25/11/2024	 What are nanoparticles/ what is nanoscience? How do nanoparticles differ in size to atoms? What are some potential uses of nanoscience? What are nanoparticles/ what is nanoscience? How do nanoparticles differ in size to atoms? What are some potential uses of nanoscience? What are some potential uses of nanoscience? What is the structure of diamond? What is the structure of graphite? What is the structure of a fullerene? 	Learning Checkpoint
02/12/2024	 Electricity 3 (P2) draw and interpret circuit diagrams. recall and apply this equation. charge f low = current × time Q =It charge flow, Q, in coulombs, C current, I, in amperes, A (amp is acceptable for ampere) time, t, in seconds, s recall and apply this equation. Current, potential difference or resistance can be calculated using the equation: potential difference, V, in volts, V current, I, in amperes, A (amp is acceptable for ampere) 	

	Populated practical activity 15: use circuit diagrams to set up and check	
	appropriate girauita to investigate the factors affecting the registence of	
	appropriate circuits to investigate the factors affecting the resistance of	
	electrical circuits. This should include:	
	• the length of a wire at constant temperature	
	 combinations of resistors in series and parallel. 	
	 explain that, for some resistors, the value of R remains constant but that 	
	in others it can change as the current changes.	
	 explain the design and use of a circuit to measure the resistance of a 	
	component by measuring the current through, and potential difference	
	across, the component	
	, p	
	Electricity 3 (P2)	
	e drow and interpret airquit diagrama	
	• draw and interpret circuit diagrams.	
	 recall and apply this equation. 	
	charge flow - current x time Ω -It	
	charge now – current < time Q – tt	
	charge flow, Q, in coulombs,	
	C current, <i>I</i> , in amperes,	
	A (amp is acceptable for ampere)	
	time, <i>t</i> , in seconds, s	
	we call and any hit this assurtion	
	recail and apply this equation.	
	Current, potential difference or resistance can be calculated using the	
	equation:	
00/40/0004		
09/12/2024		
	potential di f f erence = current × resistance V=IR	
	notantial difference V in valte V	
	polential difference, v, in volis, v	
	current, I, in amperes,	
	A (amp is acceptable for ampere) resistance.	
	R, in ohms, Ω	
	Required practical activity 15: use circuit diagrams to set up and check	
	appropriate airquite to investigate the factors effecting the resistance of	
	electrical circuits. This should include:	
	• the length of a wire at constant temperature	
	e combinationa of registers in contant temperature	
	 compinations of resistors in series and parallel. 	
	• explain that, for some resistors, the value of <i>R</i> remains constant but that	
	in others it can change as the current changes.	
	 explain the design and use of a circuit to measure the resistance of a 	
	component by measuring the current through, and potential difference	
	across, the component	
	draw an appropriate circuit diagram using correct circuit symbols	
L	a an appropriate en car alagram deing concer en car cymbols.	

	 Required practical activity 16: use circuit diagrams to construct appropriate circuits to investigate the I–V characteristics of a variety of circuit elements, including a filament lamp, a diode and a resistor at constant temperature. use this equation: <i>Rtotal = R1 + R2</i> resistance, <i>R</i>, in ohms, Ω use circuit diagrams to construct and check series and parallel circuits that include a variety of common circuit components describe the difference between series and parallel circuits explain qualitatively why adding resistors in series increases the total resistance explain the design and use of dc series circuits for measurement and testing purposes calculate the currents, potential differences and resistances in dc series circuits solve problems for circuits which include resistors in series using the concept of equivalent resistance. 	
16/12/2024	 Domestic uses and safety explain the difference between direct and alternating potential difference. Explain that a live wire may be dangerous even when a switch in the mains circuit is open Explain the dangers of providing any connection between the live wire and earth. Energy transfers explain how the power transfer in any circuit device is related to the potential difference across it and the current through it, and to the energy changes over time: power = potential difference × current P=VI power = current 2 × resistance P = I2 R The National Grid explain why the National Grid system is an efficient way to transfer energy. Higher tier only: select and use the equation: potential difference across primary coil x current in primary coil = potential difference across secondary coil x current in secondary coil 	Learning Checkpoint

Christmas Break		
06/01/2025	 Health and reproduction 4 (B3)_ Define the term pathogen and state the four main groups of pathogen. Explain how pathogens can be spread to plants or animals and cause infection. Describe the main differences between bacteria and viruses. Explain how the spread of disease can be reduced or prevented Describe the symptoms, mode of transmission, prevention and treatment for measles, HIV and AIDS, salmonella and gonorrhoea. 	
13/01/2025		
20/01/2025	 Describe colds and flu as viral diseases. Describe athlete's foot as a fungal disease	
27/01/2025	 Describe what a vaccine contains. Explain how vaccines prevent disease. Explain the idea of 'herd immunity' Explain how antibiotics treat only bacterial diseases and how this has saved lives. Describe the problems associated with antibiotic resistance Explain the difficulty in developing drugs that kill viruses without damaging body tissues. 	
03/02/2025	 Explain how the immune system defends against disease Describe what white blood cells do. Explain why antibodies are specific for one pathogen/ antigen. Describe what a vaccine contains. Explain how vaccines prevent disease. Explain the idea of 'herd immunity'. Explain how antibiotics treat only bacterial diseases and how this has saved lives. Describe the problems associated with antibiotic resistance Explain the difficulty in developing drugs that kill viruses without damaging body tissues. Describe the problems associated with antibiotic resistance Explain the difficulty in developing drugs that kill viruses without damaging body tissues. 	Learning Checkpoint
10/02/2025		Achievement Round 2
February Half Term		
24/02/2025		Achievement Round 2
03/03/2025	 Photosynthesis and Respiration 3 (B4) describe photosynthesis as an endothermic reaction in which energy is transferred from the environment to the chloroplasts by light. describe photosynthesis as an endothermic 	

	 reaction in which energy is transferred from the environment to the enlarge least by light 	
	chioropiasis by light.	
	• describe central respiration as an	
	compare the processes of aerobic and	
	anaerobic respiration with regard to the need for oxygen, the differing	
	 anacrobic respiration with regard to the need for oxygen, the differing products and the relative amounts of energy transferred 	
	 Describe how exercise causes the human body to react due to the 	
	increased demand for energy.	
	• explain the importance of sugars, amino acids, fatty acids and glycerol	
	in the synthesis and breakdown of carbohydrates, proteins and lipids.	
	Photosynthesis and Respiration 3 (B4)	
	 describe photosynthesis as an endothermic reaction in which energy is transferred from the environment to the chloroplasts by light 	
	describe photosynthesis as an endothermic	
	reaction in which energy is transferred from the environment to the	
	chloroplasts by light.	
10/02/2025	 describe cellular respiration as an 	
10/03/2025	 exothermic reaction which is continuously occurring in living cells. 	
	 compare the processes of aerobic and 	
	 anaerobic respiration with regard to the need for oxygen, the differing products and the relative amounts of energy transferred. 	
	Describe how exercise causes the human body to react due to the increased domain for another	
	Increased demand for energy.	
	in the synthesis and breakdown of carbohydrates, proteins and lipids.	
	• explain that homeostasis is the regulation of the internal conditions of a	
	cell or organism to maintain optimum conditions for function in response	
	to internal and external changes.	
17/03/2025	 explain how the structure of the nervous system is adapted to its functions 	Learning Checkysint
	extract and interpret data from graphs, charts and tables, about the	Learning Checkpoint
	functioning of the nervous system.	
	 translate information about reaction times 	
	 between numerical and graphical forms. 	
	Matter 6 (C3)	
	• understand the use of the multipliers in equations in normal script before	
	a formula and in subscript within a formula.	
	 calculate the percentage by mass in a compound given the relative formula mass and the relative atomic masses 	
	explain any observed changes in mass	
24/03/2023	• in non-enclosed systems during a chemical reaction given the balanced	
24/03/2023	symbol equation for the reaction and explain these changes in terms of	Learning Checkpoint
	the particle model.	
	 represent the distribution of results and make estimations of uncertainty 	
	 use the range of a set of measurements about the mean as a measure of uncertainty 	
	calculate the mass of solute in a given volume of solution of known	
	concentration in terms of mass per given volume of solution	
	Matter 9 (P4)	
31/03/2025	relate differences between isotopes to differences in conventional	
	representations of their identities, charges and masses.	
	change in the atomic model	
	describe the difference between the plum pudding model of the atom	
	and the nuclear model of the atom.	
	 apply their knowledge to the uses of radiation and evaluate the best 	
	sources of radiation to use in a given situation.	

	use the names and symbols of common nuclei and particles to write	
	balanced equations that show single alpha (α) and beta (β) decay	
	 explain the concept of half-life and how it is related to the random nature of radioactive decay 	
	determine the half-life of a radioactive MS 4a isotope from given	
	information	
	 calculate the net decline, (HT only) MS 1c, 3d expressed as a ratio, in a radioactive emission after a given number of half lives. 	
07/04/2025	compare the hazards associated with WS 1.5 contamination and	Learning Checkpoint
	irradiation	
	 understand that it is important for the findings of studies into the effects of radiation on humans to be published and shared with other scientists 	
	so that the findings can be checked by peer review.	
Easter Break		
	Reactions 4 (C4)	
	 explain reduction and oxidation in terms of loss of gain of oxygen. recall and describe the reactions, if any of notassium 	
	sodium, lithium, calcium, magnesium, zinc, iron and copper	
	with water or dilute acids and where appropriate, to place	
28/04/2025	these metals in order of reactivity • explain how the reactivity of metals with water or dilute acids is related	
	to the tendency of the metal to form its positive ion	
	 deduce an order of reactivity of metals based on experimental results 	
	 interpret or evaluate specific metal extraction processes when given 	
	appropriate information	
	or loss of oxygen.	
	 predict products from given reactants 	
	use the formulae of common ions to deduce the formulae of salts.	
	 describe now to make pure, dry samples of named soluble saits from information provided. 	
	 describe the use of universal indicator or a wide range 	
	 indicator to measure the approximate pH of a solution 	
05/05/25	use the pH scale to identify acidic or alkaline solutions.	Learning Checkpoint
	 predict the products of the electrolysis of binary ionic compounds in the molten state 	
	 explain why a mixture is used as the electrolyte 	
	 explain why the positive electrode must be continually 	
	replaced.	
	 predict the products of the electrolysis of aqueous solutions containing a single ionic compound. 	
	Forces and Space 4 (P5)	
	 recall that scalar quantities have magnitude only, whereas vector quantities have magnitude and direction 	
	describe the interaction between pairs	
	• of objects which produce a force on each object. The forces to be	
	represented as vectors.	
12/05/2025	Students should be able to recall and apply this equation:	
	 weight = mass × gravitational field strength W = m q 	
	 • d recognise and be able to use the symbol for proportionality. ∝ 	
	 calculate the resultant of two forces that act in a straight line. 	
	 use free body diagrams to describe qualitatively examples where 	
	several forces lead to a resultant force on an object, including balanced forces when the resultant force is zero.	
	recall and apply this equation:	
	• work done = force × distance	

	 W = F s describe the energy transfer involved when work is done. convert between newton-metres and joules 	
	give examples of the forces involved in stretching, bending or compressing an object	
19/05/2025	 explain why, to change the shape of an object (by stretching, bending or compressing), more than one force has to be applied – this is limited to stationary objects only describe the difference between elastic deformation and inelastic 	
	deformation caused by stretching forces.	
May Half Term		
	 Students should be able to recall and apply this equation: 	
	 Force = spring constant × extension F = k e 	
	 describe the difference between a linear and non-linear 	
	relationship between force and extension	
02/06/2025	 calculate a spring constant in linear cases interpret data from an investigation of the relationship between force 	
	and extension calculate work done in stretching (or compressing) a	
	 (up to the limit of proportionality) using the equation: 	
	 elastic potential energy = 0.5 × spring constant × extension 2 	
	 calculate relevant values of stored energy and energy transfers. 	
09/06/2025		Year 10 Mock Exams
16/06/2025		Year 10 Mock Exams
23/06/2025		Year 10 Mock Exams
30/06/2025		Year 10 Mock Exams
	 express a displacement in terms of both the magnitude and direction. 	
	 recall typical values of speed for a person walking, running and cycling as well as the typical values of speed for different types of transportation systems. 	
	 make measurements of distance and time and then calculate speeds of objects using the equation: 	
07/07/0005	distance travelled = speed x time solution average encod for non-uniform motion	
07/07/2025	 explain the vector-scalar distinction as it applies to displacement, distance, velocity and speed. 	
	 draw distance-time graphs from measurements and extract and interpret lines and slopes of distance-time graphs, translating information between graphical and numerical form. 	
	 estimate the magnitude of everyday accelerations. 	
	draw velocity-time graphs from measurements and interpret lines and slopes to determine acceleration	
	 apply Newton's First Law to explain the motion of objects moving with a uniform velocity and objects where the speed and/or direction changes. 	
14/07/2025	 explain that: inertial mass is a measure of how difficult it is to change the velocity of an object 	
	 inertial mass is defined as the ratio of force over acceleration. 	

	 estimate the speed, accelerations and forces involved in large accelerations for everyday road transport. estimate the speed, accelerations and forces involved in large accelerations for everyday road transport. Apply Newton's Third Law to examples of equilibrium situations. 	
21/07/2025	 explain methods used to measure human reaction times and recall typical results interpret and evaluate measurements from simple methods to measure the different reaction times of students evaluate the effect of various factors on thinking distance based on given data. explain the factors which affect the distance required for road transport vehicles to come to rest in emergencies, and the implications for safety estimate how the distance required for road vehicles to stop in an emergency varies over a range of typical speeds. explain the dangers caused by large decelerations use the concept of momentum as a model to describe and explain examples of momentum in an event, such as a collision. 	Learning Checkpoint